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ABSTRACT

This project explores the application of convolutional neural networks (CNNs) to categorize various
images in the fashion-mnist dataset. The aim is to develop an Al model capable of classifying and
interpreting a range of clothing items, such as coat, shirt, pullover, bag, trouser, skirt etc. Using the
power of deep learning, particularly CNN models known for their use in image recognition tasks, the
project focuses on building a robust image classification system. The project was done in segments,
firstly an initial model was built without any overfitting countermeasures in order to measure baseline
accuracy and other metrics. After the testing of the initial model, the model was optimized with
various countermeasures to prevent overfitting and it’s metrics were taken. Finally, the optimized
model was used to predict an image not in its dataset.

1 Introduction

CNN or Convolutional Neural Networks are widely used for image classification because of their efficiency in processing
pixels of data. CNNs give the ability to create models that can efficiently categorize and predict images based on
patterns recognized within the training images. CNN'’s are different from regular nueral networks since they use
forwards propogation as opposed to backwards propogation. Our model is trained from the fashion mnist dataset, which
gives it the ability to predict various grayscale images.

2 Methodology

2.1 Environment

The environment used to set up this model was fully web based. The model was built using a python notebook in google
colab. The dataset was loaded from google API and downloaded through google drive. The machine learning library
Keras was used because its ease of use and powerful computing. Keras was chosen opposed to Pytorch as it is much
simpler and efficient for a small scale project such as this one.

2.2 Dataset

The fashion mnist dataset was readily available in a Keras module, which made it simple to load and use. The dataset is
of medium size, and contained roughly 22,000 images. A training and validation split was chosen for this project, with
80 percent of the images used for training, and 20 percent used for validation. Each of the images were 28x28 pixels
and could be classified into 10 separate categories.

2.3 Initial Model

The initial model contained four layers, including a rescaling layer and three convolution layers combined with max
pooling layers. A learning rate of 0.001 was chosen for the model as well as the optimizer being Adam. The model used
a concrete number of 32 filters, with the size of each filter being a standard 3x3. In each convolution layer, the model
had a ReLu activation function which is the standard, widely used activation function for this type of model. The initial
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model was tested without any overfitting countermeasures such as data augmentation, dropout, or early stopping. This
was done to measure its initial performance with a relatively simple model structure. To measure accuracy and other
metrics, PLT library was used. After running the model for 20 epochs, the results and model summary are presented in
the next section.

2.4 Model Optimization

From our observation of the initial model, it was evident that the model had started to overfit. In general, some strategies
to prevent overfitting are increasing dataset size, data augmentation, adding dropout layers, adding regularization
parameters, adding batch normalization, incorporating an early stopping, and simplifying the model. Based on our
model’s performance, the strategies to add data augmentation, dropout layers, and early stopping were chosen. A
single dropout layer was incorporated in the last layer. Dropout layer simply removes certain chunks of data from the
output layer at random. Also, Keras library supported a data augmentation function which was used for the model.
Data augmentation changes the data randomly in order to introduce variation. Finally, an early stopping function was
implemented which pauses and saves the model when its validation accuracy has decreased a significant amount. Like
the initial model, a learning rate of 0.001 was used to progress down the loss function, and the optimizer Adam was
used. After running for 23 epochs (as dictated by early stopping), the results and model summary are presented in the
next section.

3 Results

3.1 Initial Model

The initial model after training for 20 epochs was not a successful or efficient model. After a certain amount of epochs
the model began to overfit at the 10 epoch mark. Final training accuracy was 0.98 and final validation accuracy was
0.91. This difference in values makes it evident the model was overfitting. On top of that, the difference between
training loss and validation loss was significant as well. Around 10 epochs the validation accuracy started to decline
while training accuracy continued increasing. This was the same case for the loss, with the validation loss increasing at
around 10 epochs while the training loss continued decreasing. The final loss of the training set was 0.0500 and the
final loss of the validation set was 0.4078. All in all, regardless of the simplicity of the dataset, the baseline model was
clearly overfitting and required some changes in order to become effective in classifying the images.
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3.2 Final Model

The improved model after training for 20 epochs was a successful and efficient model. The model did not overfit at all
for the first 20 epochs. The validation and training accuracy had a small difference, as well as the training loss and
validation loss. The final training accuracy was 0.895 and the final validation accuracy was 0.8896 This is a relatively
small difference and can be interpreted as good results. The final training loss was 0.2814 and the final validation loss
was 0.2981. The validation accuracy did start to decline after 25 epochs but the early stopping was able to find and save
the best possible model. Our model was able to successfully classify and categorize images with a 90 percent accuracy
and a 0.3 loss. When used to predict a new image not included in the dataset and never before seen by the model, it was
able to correctly classify it with a 71 percent confidence score. All in all, the model was able to successfully avoid
overfitting using the countermeasure implemented, and the validation accuracy rose consistently along with the training

accuracy with little to no difference.

Model: "sequential™

T N T S I
ECTE N (=S e R
S [T E—
T R—

conv2d 2 (

max_pooling2d 2 (

T R (= N
T = S R
e N =N R

(384.54 KB)
(384.54 KB)
(e.00 B)

Total params:
Trainable params:
Non-trainable params:




A PREPRINT - JANUARY 6, 2025

Training and Validation Accuracy Training and Validation Loss
0.90 1 —— Training Loss
0.7 4 —— Validation Loss
0.88 A
0.86
0.6 4
0.84
0.82
0.5 4
0.80
0.78 | 0.4
0.76
0.74 1 —— Training Accuracy 031
—— Validation Accuracy
T T T T T T T T T T
0 5 10 15 20 25 0 5 10 15 20 25

8s 94ms/step

(
[7-3608741e-81 2.4689855e-81 1.6797824e-62 8.4485610e-06 6.43879114
6.9588852e-87 4.173840867e-085 1.2982284e-12 1.8466773e-86 1.75175384
This image most likely belongs to T-shirt/top with a 73.7@ percent

4 Conclusion

Overall, the results of our model demonstrate the concept of using Convolutional Nueral Nets in categorizing images
from the fashion-mnist dataset. Using a relatively short time period of 20 epochs, which is roughly 45 mins of
training, the CNN Model was able to improve its validation accuracy substantially. As forseen, the optimized model’s
performance was much greater than the initial model. The techniques used in this simple project applies to future
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projects and gives insights on how to prevent overfitting on more complex machine learning models through the use of
techniques applied on this model.

5 Future Work

In the future, continual improvement of the existing model in trying to increase the accuracy of the model. Future work
might also include applications of this model with non-grayscale, complex images of various clothing items. While
our Convolutional Neural Network (CNN) model achieved promising results on the Fashion MNIST dataset, several
avenues remain open for further improvement and exploration. One potential direction is to experiment with more
advanced CNN architectures. Currently, our model is relatively simple, and integrating more sophisticated techniques
such as residual networks (ResNets) or DenseNet could lead to improved accuracy and model robustness. Exploring
other techniques like hyperparameter optimization and regularization to prevent overfitting could also be another line of
future work. In conclusion, there are many possibilities and areas of improvement for our current model, and working
towards these would be extremely rewarding.
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